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Mitochondrial biogenesis is primarily a critical adaptation aimed to balance an increased workload in an 
attempt to maintain appropriate body perfusion. Until recently, the signaling mechanisms responsible 
for this response are poorly understood. To examine the role of AMP-activated protein kinase (AMPK), 
an evolutionarily conserved fuel sensor, in mitochondrial biogenesis, we used constitutively active and 
antisense inhibition genetic tools in Dictyostelium discoideum. Constitutive activation of AMPK 
culminated in mitochondrial proliferation and elevated ATP generation; this became marked with higher 
plasmid copies. Antisense inhibition of AMPK yielded non–significant decrease in the mitochondrial 
content at low levels. However, the more severe the antisense inhibition, the more significant the 
diminution of AMPK function, resulting in the more apparent decrease in the Advanced Technology 
Program (ATP) and mitotracker fluorescence. This finding provides direct genetic evidence that AMPK 
plays a significant role in ameliorating the effects of cellular energy deficit through mitochondrial 
proliferation. Thus, the constitutive activation of AMPK initiates signalling to downstream targets. The 
result perturbation of these pathways would culminate in the mitochondrial biogenesis. Taken together, 
these findings show the constitutive activation of AMPK propels in vivo mitochondrial biogenesis and 
ATP generation in D. discoideum as in other organisms.  
 
Key words: Antisense, constitutive activation, Dictyostelium discoideum, mitochondrial mass, plasmid copies.   

 
 
INTRODUCTION 
 
Mitochondrial biogenesis is a critical adaptation to chronic 
energy

 
deprivation such as chronic metabolic stress and 

long-term exercise, rather than in phase with the cell 
cycle (Zong et al., 2002; Ventura et al., 2008). During 
increased energy demands, imbalance between rates of 
adenosine triphosphate (ATP) synthesis and consumption 

in the mitochondria would lead to a deleterious drop in 
energy-rich phosphate compounds (Goffart et al., 2004). 
Moreover, the primary indicator of altered energy 
production in the cytosol is the [ATP][ADP]/[Pi] ratio 
(Hardie and Hawley, 2001). The problem may even be 
aggravated if  there  are  defects in mitochondrial function
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itself (Bokko et al., 2007). The energy depletion becomes 
physiologically notable especially during high workload, 
and this leads to the induction of compensatory reactions 
and adaptations that result in an increase in the maximal 
capacity to generate ATP (Wakerhage and Woods, 
2002). The accuracy of mitochondrial biogenesis relies 
on the spatiotemporally coordinated synthesis, import 
and correct assembly of about 1,100 nuclear encoded 
proteins (Ventura et al., 2008; Scarpulla et al., 2012). The 
precursor proteins are escorted by molecular chape-
rones, imported and refolded into intramitochondrial 
proteins and to specific mitochondrial compartments 
(Hermann and Neupert, 2000). Other proteins encoded 
by mitochondrial DNA (mtDNA) necessary for the 
components of the electron transport chain, mitochondrial 
replication, fusion and fission must also be tightly 
synchronized to ensure proper mitochondrial function and 
shape; while striving to meet tissue energy requirements 
(Ventura et al., 2008). The ability to replicate enables 
proper organization of the mitochondrial network during 
biogenesis (Hermann et al., 1998; Chan, 2006). Thus, 
mitochondrial biogenesis is accompanied by variations in 
mitochondrial size, number and mass (Ventura et al., 
2008; Scarpulla et al., 2012). Conversely, mitochondria 
can also undergo fusion or become inactive when energy 
use is low (Hermann et al., 1998; Chan, 2006).  

Recent advances in molecular biology have started to 
elucidate the transcriptional events governing mitochon-
drial biogenesis. For instance, acute activation of AMPK 
in muscle helps defend against energy deficiency by 
promoting increased glucose transport and fatty acid 
oxidation through increased GLUT4 translocation 
(Ihlemann et al., 1999; Hayashi et al., 2000; Bergeron et 
al., 2001). Prolonged AMPK activation coordinately 
triggers cell adaptation

 
to energy stress by translating 

diverse physiological/metabolic perturbations into an 
increased capacity to generate energy via the expression 
of key transcriptional

 
regulator genes of mitochondrial 

biogenesis (Bergeron et al., 2001). A particular signi-
ficance is the expression

 
of the peroxisome proliferator-

activated receptor-γ (PPAR-γ) coactivator 1α (PGC-
1α)/PPARα (Puigserver et al., 1998; Wu et al., 1999; Lin 
et al., 2002; Goffart et al., 2004) and calcium/calmodulin-
dependent protein kinase IV (CaMK

 
IV) (both master

 

regulators of mitochondrial biogenesis) (Hawley et al., 
1995; Wu et al., 2002).  

Coactivation of PGC-1α and nuclear respiratory factors 
(NRF-1 and NRF-2) cause the induction of the 
mitochondrial transcription

 
factor A (mTFA) (Puigserver et 

al., 1998; Wu et al., 1999; Lin et al., 2002). The mTFA in 
turn upregulates the expression of nuclear and mitochon-
drial genes encoding mitochondrial proteins (Gulick et al., 
1994; Wu et al., 1999; Bergeron et al., 2001; Lehman and 
Kelly, 2002; Vega et al., 2000). The outcome is trans-
cription   and  replication  of  key  mitochondrial  enzymes 

 
 
 
 
(Clayton, 1992; Winder et al., 2000), mitochondrial

 

biogenesis to increase mitochondrial oxidative
 
capacity 

(Williams et al., 1986; Zong et al., 2002) and ATP 
generation (Xia et al., 1997; Bergeron et al., 2001). 
Expression of PGC-1α in C2C13 myoblasts cells (Wu et 
al., 1999), the heart (Lehman et al., 2000; Michael et al., 
2001; Lehman and Kelly, 2002; Suzuki et al., 2007) and 
in skeletal muscle of transgenic mice stimulates 
mitochondrial biogenesis leading to a dramatic increase 
of mitochondrial mass and size in neonatal mice and 
mitogenesis in adult mice (Michael et al., 2001; Lin et al., 
2002). The action of PGC-1α in turn is controlled by the 
coordinated actions of myocyte enhancer factor-2 (MEF2) 
transcription factor and

 
class II histone deacetylases 

(HDACs) regulatory
 
pathway via two MEF2-binding sites 

on the upstream/promoter region of PGC-1α (McKinsey 
et al., 2001; Czubryt et al., 2003; Black and Olson, 1998). 
The MEF2 through PGC-1α drive mitochondrial enzyme 
expression, growth

 
and mitochondrial energy production 

(Czubryt et al., 2003). Prolonged MEF2 function activates 
HDACs, thereby negatively regulating the expression of 
PGC-1α (Grozinger and Schreiber, 2000; McKinsey et al., 
2001). Conversely, inactivation

 
of HDACs kinases 

derepresses PGC-1α expression,
 
resulting in increased 

mitochondrial
 
biogenesis (Czubryt et al., 2003).  

Furthermore, chronic administration into nonexercising 
muscles of β-guanidinopropionic acid (GPA) (depletes 
phosphocreatine and ATP) (Bergeron et al., 2001) or 5 -
aminoimidazole-4-carboxamide-1-β-d-ribofuranoside 
(AICAR) (Corton et al., 1995; Reznick and Shulman, 
2006) or metformin (Liu et al., 2006) increases the 
expression of

 
CaMK IV and PGC-1α in skeletal muscle 

(Bergeron et al., 2001; Zong et al., 2002). In addition, 
NRF-1 binding activity, δ-ALAS mRNA expression, 
cytochrome c protein expression, key mitochondrial 
enzymes and mitochondrial content are also upregulated. 
Conversely, GPA treatment of transgenic mice 
expressing dominant-negative mutant of AMPK 
expression (DN-AMPK) in muscle did not induce the 
expression of signaling molecules/pathways like the 
PGC-1α and CaMK IV or exhibit mitochondrial biogenesis 
(Woods et al., 2000; Zong et al., 2002). Recently, 
expression of endothelial nitric oxide synthase (eNOS) 
increased mitochondrial DNA content, cytochrome c and 
cytochrome c-oxidase IV protein expression levels, and 
PGC-1α, NRF-1, and mtTFA mRNA expression (Nisoli et 
al., 2003), and consequently, mitochondrial biogenesis.  

Though, it has been known for decades that physical 
activity is associated with increased mitochondrial 
content, it is only known recently that some of the critical 
factors involved in the regulation of mitochondrial 
biogenesis have been identified. AMPK is an attractive 
potential candidate, and its role in this process has been 
advocated by recent correlative studies demonstrating 
that   AMPK   activation   is   associated   with  increased  



 

 

 
 
 
 
mitochondrial enzyme content (Winder et al., 2000) and 
mitochondrial biogenesis in rats (Bergeron et al., 2001). 
In ealier report, AMPK phenocopied mitochondrial 
dysfunction and signal transduction dose dependently. 
Given AMPK functions as key regulator of energy meta-
bolism, the study centred on assessment of its role in 
mitochondrial biogenesis. Here we report that constitutive 
activation of AMPK propel mitochondrial biogenesis in 
Dictyostelium discoideum.  
 
 
MATERIALS AND METHODS 

 
Many molecular biological techniques were used as described by 
Ausubel et al. (1995). Sequence analyses, alignments and 
database searches were conducted using web-based software 
through dictyBase (http://www.dictybase.org/blast), ExPASy (Expert 
Protein Analysis System) site (http://www.expasy.org) and at the 
Australian Genome Research Facility (www.agrf.org.au).  
 
 
Dictyostelium discoideum: Strains and culture conditions 

 
All experiments were conducted with D. discoideum strain AX2 
(Watts and Ashworth, 1970) and strains derived from it (Bokko et 
al., 2007). Each strain carried multiple copies of the following 

plasmids: (1) pPROF362 (AMPKα subunit antisense inhibition 
construct) in HPF456 to 462; (2) pPROF361 (corresponding RNA 
control construct) in HPF466 to 468; or (3) pPROF 392 (AMPKα

380
 

overexpression construct) in HPF434 to 442 strains. All strains were 
isolated using the Ca(PO4)2/DNA coprecipitation method (Nellen et 
al., 1984) and selected as isolated, independent colonies on 
Micrococcus luteus lawns on standard medium (SM)  agar supple-
mented with 20 μg/ml geneticin (G-418) (Promega Corporation, 

Madison, WI). Cells were cultured in axenic medium (HL-5) 
supplemented with 100 µg/ml ampicillin and 20 µg/ml streptomycin 
or on Klebsiella aerogenes lawns on SM agar. The selective agent 
geneticin (20 µg/ml) was added to HL5 medium for all strains.  
 
 
Gene cloning and sequence analysis 

 
AMPK cloning strategies and vectors were as described previously 

(Bokko et al., 2007). The 2.6 kb snfA gene (Sung et al., 1999;  
EMBL/GenBank ID AF118151) encoding the AMPK α subunit was 
amplified from genomic DNA template using the gene-specific 
primers PAMKF1 P5’-
TCTAGATTCGAAAAAATCATGAGTCCATATCAACAATAATCCCA
TT-3’ and PAMKR1 5’-
TCTAGACTCGAGTTAAACTACAAATATCAAAAATATGAATATTTC
ACC-3’ and cloned into pZerO2 (Invitrogen, Carlsbad, CA) to yield 

pPROF348 plasmid.  
 
 

Generation of constitutively active form of AMPK α subunit                                           

 
The cDNA encoding the catalytic domain of AMPK α subunit was 
amplified using PACDNAF1 5'- 
CTCGAGTTCGAAATGAGTCCATATCAACAAAATCCCATTGG-3' 
and PACDNAR1A 5'-

CTCGAGAATTCTTATTGGCCTCTGGGGAGCACTGACAT-3' 
primers by reverse transcription PCR (RT-PCR) using RNA 
template extracted from AX2 cells using RNAzol (Life Technologies  

Bokko et al.           17 
 
 
 
Inc., Grand Island, NY). The amplified catalytic domain comprising 
1140 bp cDNA fragment designated AMPK α

380
 was cloned into 

pZErO
TM

-2 thereafter, subcloned into the ClaI – XhoI sites of the 
pA15GFP (Fey et al., 1995), replacing the resident green 
fluorescent protein (GFP) gene, creating a fusion of the actin15 
promoter-AMPK gene to yield pPROF 392 for overexpression of a 
constitutively active, truncated AMPK α subunit.  
 
 
Creation of the AMPK α subunit antisense/sense constructs 

 

Antisense inhibition offers partial inhibition of expression of 
essential genes producing sublethal phenotypes. Plasmid 
constructs for expression of antisense RNA and the corresponding 
sense RNA control were created from pPROF348 template by 
amplifying a fragment using primers PAMPKF10 (5’-
TCTAGAATTCCCTATGGATGAAAAGATTAGAAGA-3’) and 
PAMPKR10 (5’-TCTAGAATTCTCCATGCTATTGCTATTGGTGG-
3’), cloned into XbaI site of pZErO

TM
-2. The DNA fragment(s) were 

subcloned into the EcoRI site of the Dictyostelium expression 
vector, pDNeo2 (Witke et al., 1987) in either orientations. The result 
of AMPK α subunit sense (pPROF361) and antisense (pPROF362) 
plasmid express 1172 bp of the AMPK α antisense RNA or the 
corresponding sense RNA control. Both fragments would be 
expressed under the control of the Dictyostelium actin 6 promoter. 
AMPK α subunit DNA fragments cloned into appropriate plasmids 
were submitted to the Australian Genome Research Facility 
(AGRF), Brisbane, Australia for sequencing.  
 
 
Determination of plasmid copies in strains 
 
The plasmid copies in the various strains were determined by 
Southern blotting using enhanced chemifluorescence measure-
ments in a fluoroimager (Storm860

TM
) (Amersham Biosciences, 

Castle Hill, Sydney, Australia). Genomic DNA preps were extracted 

from AX2 and from each strain. Each strain was digested with 
EcoRI, separated by gel electrophoresis, blotted onto nylon 
membrane and probed with flourescein-labelled AMPK α subunit 
DNA as well as Gβ–protein DNA probe(s) in combination with 
antifluorescein alkaline peroxidase-conjugated antibody. The 
plasmid copies were quantitated using the ImageQuant tools 
(TLv2003.03) program; computed as the ratio of the RFU values of 
respective strain to the RFU values of AX2.  
 

 
Estimation of RNA expression in strains 

 
RNA was extracted from each strain bearing plasmid vector 
expressing the catalytic domain of the AMPK α subunit (α

380
) 

(pPROF392) or an antisense/sense RNA complementary as part of 
the catalytic domain of the AMPK α subunit 
(pPROF362/pPROF361). Northern blotting analysis was performed 
by blotting nucleic acids onto nylon membrane and probed with 
DIG-labelled AMPK α subunit DNA probe to determine RNA 
expression levels in the strains. 
 
  
Mitochondrial mass by fluorescence microscopy using 
MitoTracker green or red 
 

Mitochondrial mass was evaluated to investigate mitochondrial 

biogenesis. Mitochondrial “mass” was measured by fluorescence 
microscopy after staining the mitochondria with Mito tracker green 
(a) or Mito tracker red (b) to assess mitochondrial proliferation. (A)  

http://www.dictybase.org/blast
http://www.expasy.org/
http://www.agrf.org.au/
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Axenically growing cells at the exponential phase were harvested 
by centrifugation at 3,000 × g for 15 s, washed once in Lo-Flo HL5 
(3.85 g/L glucose, 1.78 g/L proteose peptone, 0.45 g/L yeast 
extract, 0.485 g/L KH2PO4 and 1.2 g/L Na2HPO4.12H2O; filter 
sterile), incubated in Lo-Flo medium for 2 h and then divided into 
two aliquots. One aliquot was resuspended in Lo-Flo HL-5 
containing 200 nm MitTracker Green FM (Invitrogen), whereas the 
other aliquot, resuspended in only Lo-Flo HL5 as an unstained 
control. Both aliquots were incubated for an hour in the dark and 
then unbound MitoTracker Green was removed by washing the 
cells three times in Lo-Flo HL5, with 10 min shaking on an orbital 

shaker (150 rpm) between washes. Finally, the cells were 
resuspended in Lo-Flo HL5 and fluorescence was measured using 
the Blue Module in a fluorometer (Turner Biosystems Modulus™). 
The MitoTracker Green fluorescence per million cells was 
calculated after subtraction of the background fluorescence in the 
unstained cells. (B) Cells grown to log phase in HL5 medium were 
placed on sterile coverslips in six-well plates (Nalge Nunc

™
, 

Naperville, IL), washed gently in Lo-Flo HL5 and stained with 200 

nm MitoTracker Red CMX-Ros (Invitrogen™) in Lo-Flo HL5 for 1 h 
in the dark. Unbound MitoTracker Red was removed by washing 
the cells 3 to 4 times in LoFlo HL5 over 2 h. After two washes in 
phosphate buffer (12 mm Na2HPO4, 12 mm NaH2PO4, pH 6.5), the 
cells were fixed and flattened at the same time by placing the 
coverslips up side down on a layer of 1% agarose in phosphate 
buffer containing 3.7% paraformaldehyde for 30 min. The fixed cells 
on the coverslips were washed four times (5 min each) in 
phosphate-buffered saline and mounted for microscopy. Images of 

cells and mitochondrial concentrations were obtained and analysed 
by fluorescence miscroscopy. 
 
 
ATP assays  

 
The ATP levels in cells of the AMPKα

380
 overexpressing cells and 

AMPK antisense-inhibited cells were measured. ATP assays were 

conducted using the luciferase-based ATP Determination Kit 
(Biaffin GmbH, Germany) in cells grown axenically in HL5 medium. 
Background luminescences measured before the assay were 
subtracted, and ATP concentrations were determined from a 
standard curve constructed using 10-fold serial dilutions of the ATP 
standard (1 × 10

-7
 M to 1 × 10

-11
 M) in assay buffer. 

 

 

RESULTS        
 
The AMPK α subunit in Dictyostelium is encoded by a 2.6 
kb gene annotated as Q9XYP6 (www.expasy.org), 
AF118151 (www.ncbi.nlm.nih.gov/entrez) and 
DDB0215396 (http://www.dictybase.org/blast); comprised 
of five exons and four introns. The N-terminus holds a 
highly conserved catalytic core, S_TKc domain and 
identical APE and DFG motifs with other eukaryotic cells 
(Figure 1). It also has asparagine rich C-terminus. 
 
 

Plasmid copies and RNA expression 
 
The form of the AMPK α subunit that was overexpressed 
contained the entire catalytic domain but was truncated 
within the putative region responsible for autoinhibition 
and binding to the β subunit. The truncation of the  AMPK 

 
 
 
 
α subunit in the catalytic domain created a constitutively 
active form of AMPK. Southern blot analysis for the 
strains overexpressing truncated AMPK α subunit and 
strains in which AMPK is antisense inhibited yielded 
bands that varied in their intensities (Figures 2A and 3A). 
This indicates different plasmid copies of the respective 
strains. The least prominent band showed intensity 
higher than AX2, the wild type strain (Figures 2 and 3). 
The strains exhibited a characteristic, stable level of RNA 
expression and the differences reflected the expression 
plasmid copies in the genome (Figures 2B and 3B). Both 
plasmid constructs affected expression in a copy number-
dependent manner. A steady state level of AMPKα

380
 

mRNA in quantitative northern blots tightly correlated with 
the plasmid copies of the AMPKα

380
 expression construct 

insertions in the strain genomes (Figures 2A). 
Overexpression mutants showed strong RNA expression 
signals of increasing intensities as a number of AMPK 
α

380
 construct increased (Figure 2). The sense RNA 

(control) also showed high RNA expression that tightly 
correlated with the plasmid copies (Figure 3B). By 
comparison with the sense RNA controls, the equivalent 
antisense RNA levels were dramatically reduced even at 
the lowest plasmid copies of the antisense plasmid 
construct (Figure 3). Interestingly, the extent of RNA 
reduction correlated with the plasmid copies of the 
antisense RNA-expression construct (Figure 3). This 
indicates degradation in the antisense RNA expressing 
transformants of both the antisense and the native 
mRNA. This would mean lower expression levels of the 
native mRNA. Accordingly, the plasmid copies of the 
corresponding constructs were used as AMPK α subunit 
expression index. To facilitate analysis and presentation 
of the data, positive values were assigned to plasmid 
copies for overexpression constructs while negative 
values for the AMPK α antisense construct.  
 
 
Mitochondrial mass  
 
Overexpression of the AMPK α catalytic domain resulted 
in a strong Mitotracker Green fluorescence per cell, 
whereas AMPK α antisense inhibition exhibited slight 
reduction of the fluorescence signal compared to that of 
AX2 cells (Figure 4). Additionally, there was 2 to 3 fold 
increase in mitochondrial mass in strains overexpressing 
AMPK α subunit compared to AX2. Examination of 
MitoTracker Red stain showed increased mitochondrial 
fluorescence in AMPK α

380
 overexpression strains but de-

creased in AMPK α subunit antisense strains compared 
to AX2 (Figure 5). Increased intensity of MitoTracker Red 
stain in AMPK α

380
 strains signify elevated mitochondrial 

mass per cell. The higher the plasmid copies in the con-
stitutively active AMPK strain the more the fluorescence 
from the assayed cells (Figures 4 and 5). The increase  in 
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 AsuII  
 XhoI  
 HindIII  
 XbaI  
 DraII  
 ApaI 

HindIII.SacI.BamHI.EcoRI.PstI.EcoRV.NotI.XhoI.XbaI.XhoI 

LacZ 

AMPK 

 

LacZ* 

ccdB 
f1 ori 

Kanamycin 

pMBI origin 

Plac 

pPROF 348 

5942 bp 

 
(A) 
 

 |Q9XYP6|Q9XYP6_DICDI ------MSPYQQNPIGSLGGLYGSGGIEKSSQIIGNYRLDKTLGIGSFGK  44
|Q38997|KIN10_ARATH DEFNLVSSTIDHRIFKSRMDGSGTGSRSGVESILPNYKLGRTLGIGSFGR  55

|P54645|AAPK1_RAT ---------------------MAEKQKHDGRVKIGHYILGDTLGVGTFGK  30

|Q13131|AAPK1_HUMAN -------------------MATAEKQKHDGRVKIGHYILGDTLGVGTFGK  32

|Q5EG47|AAPK1_MOUSE ---------------------MAEKQKHDGRVKIGHYILGDTLGVGTFGK  30

|Q5U118|Q5U118_DROME ---------MPQMRAAAAEAVAAGSANGQPLVKIGHYLLGATLGTGTFGK  41

|Q95ZQ4|AAPK2_CAEEL RKDRDSTDNSSKMSSPGGETSTKQQQELKAQIKIGHYILKETLGVGTFGK 100

|P06782|SNF1_YEAST HHHHHHHHHHHHGHGGSNSTLNNPKSSLADGAHIGNYQIVKTLGEGSFGK  68               

: :* :  *** *:**:

|Q9XYP6|Q9XYP6_DICDI CHHHMVVHRDLKPENLLLDPINKCIKIADFGLSNMMQDGDFLKTSCGSPN 194

|Q38997|KIN10_ARATH CHRNMVVHRDLKPENLLLDSK-CNVKIADFGLSNIMRDGHFLKTSCGSPN 204

|P54645|AAPK1_RAT CHRHMVVHRDLKPENVLLDAH-MNAKIADFGLSNMMSDGEFLRTSCGSPN 179

|Q13131|AAPK1_HUMAN CHRHMVVHRDLKPENVLLDAH-MNAKIADFGLSNMMSDGEFLRTSCGSPN 181

|Q5EG47|AAPK1_MOUSE CHRHMVVHRDLKPENVLLDAH-MNAKIADFGLSNMMSDGEFLRTSCGSPN 179

|Q5U118|Q5U118_DROME CHRHMIVHRDLKPENLLLDHN-MHVKIADFGLSNMMLDGEFLRTSCGSPN 190

|Q95ZQ4|AAPK2_CAEEL CHRHMVVHRDLKPENLLLDEQ-NNVKIADFGLSNIMTDGDFLRTSCGSPN 249

|P06782|SNF1_YEAST CHRHKIVHRDLKPENLLLDEH-LNVKIADFGLSNIMTDGNFLKTSCGSPN 206                        

**:: :*********:*** *********:* **.**:*******

|Q9XYP6|Q9XYP6_DICDI YAAPEVISGKLYAGPEVDVWSCGVILYAFLCAKLPFDDESIPMLFKKIRE 244

|Q38997|KIN10_ARATH YAAPEVISGKLYAGPEVDVWSCGVILYALLCGTLPFDDENIPNLFKKIKG 254

|P54645|AAPK1_RAT YAAPEVISGRLYAGPEVDIWSSGVILYALLCGTLPFDDDHVPTLFKKICD 229

|Q13131|AAPK1_HUMAN  YAAPEVISGRLYAGPEVDIWSSGVILYALLCGTLPFDDDHVPTLFKKICD 231

|Q5EG47|AAPK1_MOUSE  YAAPEVISGRLYAGPEVDIWSSGVILYALLCGTLPFDDDHVPTLFKKICD 229

|Q5U118|Q5U118_DROME YAAPEVISGKLYAGPEVDIWSCGVILYALLCGTLPFDDEHVPTLFRKIKS 240

|Q95ZQ4|AAPK2_CAEEL  YAAPEVISGKLYAGPEVDVWSCGVILYALLCGTLPFDDEHVPSLFRKIKS 299

|P06782|SNF1_YEAST   YAAPEVISGKLYAGPEVDVWSCGVILYVMLCRRLPFDDESIPVLFKNISN 256                      

*********:********:**.*****.:** *****: :* **::*

 
(B) 
 
 
 

 

 
 
Figure 1. (A). The plasmid map of genomic region encompassing AMPK α subunit (Chromosome 3 
coordinates 589784–592434, Watson strand) (DictyBase http://dictybase.org) cloned into pZEro2. The AMPK 
α subunit in Dictyostelium is encoded by a 2.6kb gene. (B). The AMPK α subunit amino acids sequences of 

Dictyostelium discoideum using CLUSTAL W sequence alignment program (http://expasy.org) showed 61% 
homology to mammalian cells (Homo sapiens and Rattus norvegicus), 56% to Drosophila melaogaster, 61% 
to Ceanorhabditis elegans, 65% to Arabidopsis thaliana and 64% to Saccharomyces cerevisiae. The N-
terminus contains a highly conserved catalytic core, S_TKc domain and identical APE (shaded blue) and DFG 
(shaded purple) motifs with other eukaryotic cells. The residue (tyrosine, Y) shaded pink is conserved and 
marks the start of the catalytic domain in all eukaryotes. The asterisk (*) means residues are identical in all 
sequences in the alignment. The colon (:) means conservative substitutions are present that is, residues are 
identical or replaced by amino acids with similar biochemical properties. The period (.) means partially 

conservative substitutions of similar amino acids. The residue asparagine (N) at position 166 is only present in 
D. discoideum. Residue numbers to the right of the figure. Each amino acid residue is represented with one 
letter code. 
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                    AX2  435    436    437     438     439     440      441     442     443    

                (0)    (60)  (213)  (247)  (168)  (188)   (192)    (204)   (252)  (230)     

     A.      

  

   B.         

 

 

HPF STRAINS 

1.14 kb 

1.77 kb 

1.14 kb 

 
 
Figure 2. The plasmid copy number-dependent steady state RNA expression levels of the AMPK α subunit 

in overexpression strains. Genomic DNA and total RNA were extracted from stable transformants bearing 
plasmid expression vector construct (pPROF392) expressing the truncated catalytic domain of the AMPK α 
subunit (α

380
). Figures atop the Southern blot indicate HPF strain identification number. Copy numbers for 

pPROF392 are indicated in parentheses. A) Genomic DNA from D. discoideum AX2 and overexpression 

strains (HPF434 – HPF442) were digested with EcoRI and subjected to electrophoresis on 1% agarose gel, 
blotted onto nylon membrane and probed with DIG-labelled AMPK α subunit DNA fragment. The different 
bands (1.14 kb) showing different intensities represent each strain indicating there are variations in the 
copies of the overexpression plasmid construct (pPROF392) insertions in the genome. The lower panel 
shows same genomic DNA probed with GTP-binding protein (β subunit) probe (1.77 kb), served as 
indicator that similar concentrations of the genomic DNA were used per strain. B) Total RNA (1.14 kb) from 
corresponding strains were separated in a formaldehyde agarose gel, transferred onto nylon membrane 
and probed with DIG-labelled AMPK α subunit DNA. The blot shows RNA expression levels in the 
respective strains are closely related to the copy numbers. Endogenous transcript is not detectable with the 

probe in northern blot. 

 
 
 

in mitochondrial mass is an indication of mitochondrial 
proliferation. In the same vein, the more severe the 
antisense inhibition, the more the apparent decrease in 
the Advanced Technology Program (ATP). 
 
 
Effects of AMPK α subunit expression on ATP levels 
 
Since mitochondrial biogenesis was stimulated in 
AMPKα

380
 overexpressing cells it is anticipated that ATP 

levels in these cells would be altered in a similar fashion. 
The ATP levels in AMPK α

380
 overexpression cells were 

significantly elevated in the range of 2 to  4  folds  relative 

to the ATP levels in AX2 strain (Figure 6). The higher the 
plasmid copies, the more the ATP production per cell. 
These findings are consistent with the role of AMPK in 
energy homeostasis and infer that AMPK activation in 
response to chronic energy stress boosts ATP generation 
to maintain energy expensive cellular functions. 
Conversely, the severe the antisense inhibition, the more 
apparent the ATP decrease. Taken together, this finding 
provides genetic evidence that AMPK plays a critical role 
in mitochondrial proliferation. Thus, constitutive AMPK 
activation initiates signalling pathways that would result in 
mitochondrial biogenesis. These findings show that con-
stitutive activation of AMPK cause increase in mitochondrial  
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                    AX2    456   457    458    459   460   461  462    466  467   468 

               (0)    (125)  (189)  (243)  (276) (315)  (392) (218)  (114) (136) (172)     

            

        

                   

  

A. 

B. 

HPF SENSE STRAINS HPF ANTISENSE STRAINS 

1.77 kb 

1.2 kDa 

 
 
Figure 3. The plasmid copy number-dependent steady state RNA expression levels of the AMPK α 

subunit antisense plasmid construct in stable transformants evaluated by northern blotting.  Genomic DNA 
and total RNA were extracted from stable transformants bearing plasmid expression vector constructs 
expressing the antisense RNA (pPROF362) complementary to part of the catalytic domain of the AMPK α 
subunit and the sense control strains. Figures atop the Southern blot indicate HPF strain identification 
number. Copy numbers pPROF362 are indicated in parenthesis. A) Genomic DNA from D. discoideum 

AX2 and antisense inhibited strains (HPF456 – HPF462) and complimentary sense strains (HPF466 – 
HPF468) were digested with EcoRI and subjected to electrophoresis on 1 % agarose gel, blotted onto 
nylon membrane and probed with DIG-labelled AMPK α subunit DNA fragment. The different bands 
showing varying intensities for each strain indicate there are variations in the copies of the antisense 
plasmid construct (pPROF362) and the control sense plasmid construct (pPROF361) insertions in the 
genome. The lower panel shows the same genomic DNA probed with GTP-binding protein (β subunit) 
probe, served as indicator that similar concentrations of the genomic DNA were used per strain.  B) Total 

RNA from respective strains were separated in formaldehyde agarose gel, transferred onto nylon 
membrane and probed with DIG-labelled AMPK α subunit DNA. The blot shows RNA expression levels in 
the respective strains are closely related to the copy numbers. Endogenous transcript is not detectable 
with the probe in northern blot.   

 
 
 
mitochondrial content in D. discoideum. This 
constitutesdirect evidence that genetic activation of 
AMPK culminates in mitochondrial biogenesis. 
 
  
DISCUSSION 
 
AMPK has been the focus of increasing attention for its 
fundamental roles in cellular energy homeostasis in 
healthy  cells  and  in  a variety of pathological  situations, 

most notably diabetes, cancer (Hardie and Hawley, 2001; 
Winder and Hardie, 1999) and mitochondrial diseases 
(Bokko et al., 2007). Healthy cells AMPK, a heterotrimeric 
complex comprising of a catalytic α subunit (Crute et al., 
1998), regulatory non-catalytic β (Thornton et al., 1998),  
and γ subunits (Carling et al., 1994), is activated very 
sensitively by stresses such as strenuous exercise, 
ischaemia or glucose deprivation (Salt et al., 1998). ATP 
hydrolysis yields ADP that helps replenish cellular ATP 
by donating a phosphate group to another  ADP,  forming  
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Figure 4. Effect of AMPK α subunit express ion on mitochondrial mass in Dictyostelium. Mitochondrial “mass” was measured by 

fluorescence with the mitochondrion-specific dye, Mitotracker Green after subtraction of autofluorescence from unstained cells and 
presented as relative fluorescence units per 10

6
 cells. The blue circles with red borders represent individual strains each carrying 

the indicated number of copies of the AMPK α
380

 overexpression construct while gray circles stand for strains each carrying the 
indicated number of copies of AMPK α subunit antisense construct. Each red square represents a strain carrying both the 
chaperonin 60 antisense construct and the AMPK α antisense construct per genome. The dark blue circles represent the AX2, the  
wild type parental strain used as control. Compared to wild type cells, the Mitotracker Green fluorescence was higher in the case of 
AMPK α

380
 overexpression, but reduced in the AMPK α subunit antisense-inhibited strain cells. R

2
 is the coefficient of variation and 

equals the square of the Pearson product-moment correlation coefficient. The significance probability is the probability of the 
observed results occurring under the null hypothesis that the correlation coefficient was zero. Negative values indicate the copy 
numbers of the AMPK α subunit antisense inhibition construct, while positive values indicate copy numbers of the overexpression 
construct. 

 
 
an ATP and an AMP. The dramatic rise of AMP: ATP 
ratio leads to an activation of AMPK via allosteric 
activation (Adams et al., 2004; Scott et al., 2004) and 
phosphorylation by AMPK–kinase (AMPKK) (Weekes et 
al., 1994; Hawley et al., 1995; Stein et al., 2000) allowing 
≥ 200-fold activity. Thus, AMPK functions as a metabolic 
masterswitch, or more accurately, ‘low fuel warning 
system’ in mammalian (Winder and Hardie, 1999; Hardie 
and Hawley, 2001) and other eukaryotic cells (Wilson et 
al., 1996; Carlson, 1999; Pan and Hardie, 2002). The 
activated cascade regulates metabolic pathways and 
promotes the adaptation of eukaryotic cells to their micro-
environment in  response  to  the  ever  changing  energy  

charge (Hardie and Hawley, 2001; Suzuki et al., 2007). 
This, places AMPK holoenzyme at a central control point 
in maintaining cellular energy homeostasis. This pivotal 
role places AMPK in an ideal position to also play a wider 
role in regulating whole-body energy metabolism 
(Carling, 2004). 

Given that all physiological processes depend on 
energy supply in the form of ATP, there are potentially 
many links with AMPK. Rapid progress in the field has 
also created great expectations that AMPK will be an 
important therapeutic target for the treatment of diabetes, 
obesity, cancer, cardiovascular disease and 
mitochondrial diseases. Irrespective  of  these  outcomes,  
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  A: AX2: Wild type cells   

                             

  

                      B: AMPK? 380     

                            

  

                     

                     C: Antisense inhibited strains   

                            

 A: AX2: Wild type cells 

                       

 

                     B: AMPKα380  

                      

 

                     

                    C: Antisense inhibited strains 

                      

 A: AX2: Wild type cells 

                       

 

                     B: AMPKα380  

                      

 

                     

                    C: Antisense inhibited strains 

                       
 
Figure 5. Mitotracker Red fluorescence microscopy of representative AMPK overexpressing, AMPK 

antisense-inhibited strains and wild type cells. Vegetative cells from AX2, AMPKα
380

 overexpressing and 
AMPK α antisense-inhibited strains were stained with the mitochondrion-specific dye, Mitotracker Red and 
analysed by fluorescence microscopy. Compared to wild type cells (panel A), the Mitotracker Red 

fluorescence was more intense in the cells from AMPKα
380

 overexpression strains (panel B), but similar to 
the AMPK α antisense-inhibited cells (panel C).  

 
 
we can be assured that AMPK research will provide 
many new insights into the integration of metabolism and 
physiological functions. Despite the complexities of 
energy metabolism, it is clear that the primary trigger for 
mitochondrial biogenesis is an inability of the 
mitochondria to produce energy in the form of ATP to 
match the corporal demand. Constitutive activation of 
AMPK approximates the persistent AMPK activation such 
as from stresses. The strains expressing AMPKα

380
 had 

varied but stable plasmid copies of the plasmid construct 
and corresponding varied levels of RNA expression. The 
strains expressing the constitutively active Dictyostelium 
AMPK α

380
 phenocopied the chronic activation of AMPK 

and exhibited increased expression of RNA manifolds the 
level in wild type cells. 

Truncation of the mammalian AMPK α subunit catalytic 
domain created a constitutively active form of AMPK and 
expression was characterised by significant increase in 
activity of the AMPK (Crute et al., 1998). The 
constitutively active AMPK has also shown to be resistant 

to inactivation by protein phosphatase 2C (Woods et al., 
2000). Strains expressing the antisense construct 
contained varied plasmid copies and corresponding RNA 
expression profile depicting diminution of RNA as the 
plasmid copies increased. Antisense inhibition of the 
AMPK α subunit led to significant reduction of expression 
and consequently attenuation of AMPK function. This 
indicates degradation in the antisense RNA expressing 
transformants of both the antisense and the native 
mRNA. This would mean lower expression levels of the 
native mRNA. During successful antisense, RNA 
inhibition, both strands of the mRNA and antisense RNA 
duplex, are degraded by the RISC complex (Hinas and 
Söderbom, 2007). Earlier attempts at creating a knockout 
strain or antisense inhibited strains with plasmid copies 
higher than 400, which were not successful. This possibly 
shows that strains in which APMK is knocked out may not 
be viable. Additionally, strains with severely attenuated 
RNA expression beyond a particular threshold may also 
not survive. Moreover, strains with higher plasmid  copies 



 

 

24         J. Cell Biol. Genet. 
 
 
 

 
 

Figure 6. Effect of AMPK α subunit expression on ATP levels in Dictyostelium. ATP levels in Dictyostelium cells was measured 
using luciferase-based luminescence in a Turner Modulus Fluorometer with the luminescence module and presented as picomoles 
per 10

6
 cells. The gray circles represent strains carrying the indicated number of copies of an AMPK α subunit antisense construct 

while the blue circles represents strains carrying the indicated number of copies of the AMPK α
380

 overexpression construct per 
genome. Each red square represents a different strain carrying both the AMPK α antisense construct and the chaperonin 60 
antisense construct. The black circle represents AX2, the wild type parental strain used as control. R

2
 is the coefficient of variation 

and equals the square of the Pearson product-moment correlation coefficient. The significance probability is the probability of the 

observed results occurring under the null hypothesis that the correlation coefficient was zero. Negative values indicate the copy 
numbers of the AMPK α antisense inhibition constructs, while positive values indicate copy numbers of the overexpression 
construct used as expression indices. 

 
 
of antisense plasmids showed severe growth and 
development defects (Bokko et al., 2007). 

Overexpression of a constitutively active form of the 
AMPK α subunit resulted in increased mitochondrial 
content, mitochondrial mass and ATP levels. The 
mitochondrial dyes (Mitotracker Red and Mitotracker 
Green) showed that AMPK α

380
 overexpression resulted 

in increased mitochondrial mass in Dictyostelium cells 
indicative of mitochondrial proliferation. By constitutive 
activation of AMPK, mitochondrial dysfunction can be 
countervened to generate energy. As in human cells, 
AMPK in Dictyostelium stimulates the proliferation of 
mitochondria and elevated ATP production. This finding 
corroborates Williams et al. (1986) and Zong et al. (2002) 
who reported that in mammalian cells, particularly in 
muscle tissues, AMPK activity leads to mitochondrial pro-
liferation. Indeed, Zong et al. (2002) stated that AMPK is 
the proximal signalling step in stimulation of mitochondrial 
biogenesis in mammalian cells. This is part of the 

response to strenuous physical training in athletes and is 
a component of AMPK’s roles in energy homeostasis in 
healthy cells. Prolonged AMPK activation essentially 
sequel to mitochondrial dysfunction initiates mitochondrial 
biogenesis to buffer energy deficicts and low ATP level in 
the cell in response to chronic energy deprivation. Thus, 
by sensing the energy status of the cell, AMPK initiates

 

events culminating in mitochondrial biogenesis. Genetic 
activation of AMPK mimics activation, culminating in 
mitochondrial proliferation. Furthermore, the ATP levels 
were elevated in AMPK α subunit overexpression strains 
sequel to mitochondrial proliferation. This work adds to 
the multiple machinery channels that concertedly 
culminate in mitochondrial biogenesis. 

Conversely, antisense inhibition of AMPK α subunit did 
not significantly affect mitochondrial content or ATP 
levels at lower plasmid copies. The ATP levels and mito-
chondrial content were similar to the wild type strain. As 
the functional attenuation by antisense inhibition becomes 



 

 

 
 
 
 
severe, the mitochondrial content and ATP level 
diminution becomes apparent. For instance, strain 
HPF461 with the highest plasmid copies, had the least 
fluorescence when stained with mitotracker green as well 
as lowest ATP level. Antisense strains may establish new 
energy threshold in the strains or had inapparent effect 
on AMPK activity with respect to mitochondrial content. 
Earlier reports suggested that mitochondria may undergo 
fusion with other mitochondria or become inactive when 
the energy use is low (Hermann et al., 1998; Chan, 
2006). Furthermore, Jones et al. (2012) advocated that 
mitochondria alter their function according to prevailing 
cellular energetic requirements and thus function as 
sensors that generate signals to adjust fundamental 
cellular processes through a retrograde mitochondria-
nucleus signalling pathway.  
 
 
Conclusion 
 
Taken together, this work show that AMPK plays a critical 
role in mitochondrial proliferation. Constitutive activation 
of AMPK initiates signalling to downstream targets path-
ways that culminates in increased mitochondrial mass in 
D. discoideum. This constitutes direct evidence that 
genetic activation of AMPK propels in vivo mitochondrial 
biogenesis and ATP generation in D. discoideum. 
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